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The theory  of small  elastoplast ic  strains of d ie lect r ics  in the presence  of an e lectr ic  field is 
developed in the work.  An express ion is obtained for  the e lec t r ic  part  of the s t r e ss  t ensor .  
Total f ree  energy  minimum theorems with constant t empera tu re  and simple proport ional  
loading and unloading theo rems  are  proved. Experiments to calculate the m a s s  functions 
are  discussed.  

1. The theory  of smal l  elastoplast ic  s t ra ins  and its fundamenta l theorems and coro l la r ies  [1] were 
general ized in [2] to the case of instantaneous small  elastoplast ic  s t ra ins .  There  also a r i ses  the problem, 
to be discussed below, regard ing  the development of a theory of small  elastoplast ic  s t ra ins  of dielectr ics  
in the presence  of an e lec t r ic  field. 

Let us consider  a solid dielectr ic  of a rb i t r a ry  shape with volume V bounded by the surface S. We 
introduce in a nondeformed coordinate sys tem x i, the ui, or  components of the displacement vector  and e ij, 
the s train tensor  components.  We will henceforth assume that volume forces  with cubic density F i act on 
the body and s t r e s ses  T i on the surface S. The e lectr ic  field E is crea ted  by external  charges  distributed 
with density p within V and by free charges  with density p~ on the conductor  surface Z. It is n e c e s s a r y  
to solve the e lec t ros ta t ics  problem defined by Maxwell 's  equations and by the corresponding boundary con- 
ditions, taking into account deformation of the dielectr ic  if we are  given Fi, Ti, p,  and p y .  Suppose the di- 
e lec t r ic  medium is isotropie in the uns t ressed  state in t e rms  of e lec t r ica l  and mechanical  proper t ies .  In 
general,  s t ra in  des t roys  the isotropy of the body. Henceforth we will assume that the dielectr ic  is also 
isotropic following strain 

z = •  0) ,  

where ~t 0 is the permit t ivi ty  of the medium in the undeformed state, 0 = r  and C u is s t rain intensity: 

e~ = eoe~iJ . ( 1 . 1 )  

Here, eli is the s train deviator.  

Following [3], we obtain an express ion for  the s t r e s s  t ensor  due to the e lec t r ic  field, 

~ J  = - ~- 0~-2 8-]  

The equilibrium equations, taking into account Coulomb forces ,  a re  writ ten in the fo rm 

0aij 
Ox'--'~" -[" pEi -- F~ : O, 

0 e where a ij =~ ij +(r i "  and where (ri~ is the mechanical  par t  of the s t r e s s  t ensor  re la ted  to the variat ion in 
the mechanical  p a ~  of f ree  energy with variations in 5~ ij" 

We have, in accordance  with [3] for  the total s t r e s s  t ensor  Tij, 

TU = (~~ -~ (Y~J ~- • (E iEj  F.~ - ~ i ~ ) .  
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The boundary  condi t ions  f o r  the s t r e s s e s  on s u r f a c e s  with n o r m a l s  having d i r ec t iona l  cos ines  n i will  be 
wr i t t en  in the f o r m  

T~jnj=(E~E~--E.---~6~)n~+T~ x ~ S - - E ~ ;  (1.2) 

Here ,  Z i is the  par t  of  the conduc to r  s u r f a c e  coinc id ing  with the  par t  of the s u r f a c e  S of the d i e l ec t r i c .  
0 in a f o r m  of a dev ia to r  and a sphe r i ca l  t e n s o r  We r e p r e s e n t  the t e n s o r  ~i j  

0 ~0 , t 0 oij : b~j:- o~ ~176 : T~ 

We set  

[ 3 .q0 Vo "]t/~ (EiEi)t/z = E; D = (D~Di)t/2, 

w h e r e  the D i a r e  the componen t s  of the induct ion vec to r .  We wil l  a s s u m e  that  loading is s imple  o r  n e a r l y  
s imple  [1]. A ca lcu la t ion  of  s imp le  loading, both m e c h a n i c a l  and e l ec t r i c ,  wil l  be given below. 

The t h e o r y  of  sma l l  e l a s top la s t i c  s t r a i n s  of d i e l ec t r i c s  with s imple  ac t ive  loading is d e s c r i b e d  by 
t h r e e  laws.  F i r s t l y ,  the  magn i tudes  ~ 0 and ~ obey  Hooke ' s  law. 

o~ (1.3) 

Secondly,  the dev ia to r  va lues  a r e  r e l a t e d  by the equat ion 

Final ly ,  

SiOj 2 au = -~-~ eij. (1.4) 

E (1.5) Ei = -~ D~, 

We f u r t h e r  add to Eqs .  (1.3)-(1.5) t h r e e  equat ions  defining t h r e e  un ive r sa l  funct ions  that  s a t i s fy  the 
c o r r e s p o n d e n c e  pr inc ip le  when no f ield is p resen t :  

k=%(D);  cr,,=cp.a(e,,, D); 

E=%(O, s~,)D; %(0, e . )= l / •  (1.6) 

2. The funct ion ~01 o c c u r r i n g  in Eq. (1.6) can be d e t e r m i n e d  f r o m  a un i fo rm c o m p r e s s i o n  e x p e r i m e n t  
on a thin, flat ,  d i e l ec t r i c  sphe re ,  go 2 can be d e t e r m i n e d  f r o m  a l i nea r  c o m p r e s s i o n  e x p e r i m e n t  on a thin 
tab le t  in a homogeneous  field, and go 3 can be de t e rmined  f r o m  a tens ion  and t o r s i o n  expe r imen t  on a th in -  
walled tube in a va ry ing  field.  

We will  cons ide r  the un i fo rm  c o m p r e s s i o n  p rob lem in the  h i g h - p r e s s u r e  c h a m b e r  of  a sol id  d i e l ec t r i c  
med ium,  f i l l ing the space  between the  pla tes  of a sphe r i ca l  capac i to r .  The p r e s s u r e  p is u n i f o r m l y  d i s t r i b -  
uted with r e s p e c t  to the inner  and ou t e r  s u r f a c e s  of the hollow sphere .  The d i s tance  c between the  plates  
is  smal l :  c<< R, whe re  R is the  m e a n  rad ius  of  the p la tes .  S t r e s s  and s t r a in  can t h e r e f o r e  be cons ide red  
homogeneous  to an approx imat ion .  Accord ing  to Eq. (1.2), 

uO i De (  OO_.~ u 2 el@ 

t D~ Of 2 eo0 

Adding Eqs .  (2.1) and not ing that  e i i =  0, we obtain 

- - - - -  + ~ ]  - 2 ~ - o -  

~ _ ~_A = o; o'O] 2• 0 

E~ ~2 
~ o )  - ~ = o. 

. . . .  p; 
(2.1) 

3 1) 2 ~/ D z 
3 a ( ~  ~ ~ .2 J0 ~ .,-7-; ~(~ =-%(D)0.  (2.2) ~0 240 

It is evident  f r o m  Eq. (2.2) that  if we know x ( 0 ,  ~u ) and m e a s u r e  p, 0 ,  D, and ~<, we can obtain r  The 
f o r m  of  the dependence  of ~(0, z u ) on 0 and a u will  be d e t e r m i n e d  below. 
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Let us consider the strain problem for  a dielectr ic  plate within a plane capaci tor  and filling it. The 
axis z is d i rected along the normal  to the capaci tor  plates.  We assume that the plate dimensions (equal to 
a in the direction of the x axis and to b in the direct ion of the y axis) sat isfy the condition a >> b, but at the 
same t ime a, b>> d, where d is plate thickness .  In this case,  the plate can be approximateiy considered as 
a bar .  Suppose a s t ress  Tx acts in the direction of the x axis and let all components of the s train tensor,  
except for e x x = e  1, be set equal to 0. It is n e c e s s a r y  to res t r ic t  s t ra in  along the y axis by means  of un- 
deformable walls in o rder  to real ize  l inear compress ion  in the direction of the x axis. It can be verified 
that if we set exx=Const ,  the boundary conditions and equilibrium equations are  satisfied. Thus the plate 
experiences  homogeneous s t rain.  Then 

e~=2/3e~, eyy=-- e~/3; ezz=-- ei/3; 

exv=exz=ey~O; O=e~, e~=2/3el. 

We have, in accordance with Eq. (1.2), on the end faces  of the plate 

[2 t D~ Of t D 2 0 f  k e  1 D2 ' D2 , ' T  

We can find ~02(e u, 13) by measur ing  e t, Tx, x, and D if we know ~I(D) and rg3(O, e.u). We have by the ten-  
sion and tors ion  experiment for  a thin-walled dielectr ic  tube 

0 0 0 0 o~ 0; a~ el; (2.3) {~xy ~- T; Gxx ~ ~Jyy = g x z  = -~- = 

ex,j=?; e~.~=eyy=--t/me~, e~z=e 1. (2.4) 

The curve m =m(e i, T) was also found in the experiment.  It can be easi ly verif ied that Eqs. (2.3) and (2.4) 
sa t isfy  the equilibrium equations and boundary conditions. We obtain f rom Eqs. (1.1), (2.3), and (2.4), 

e ~ = - g - r  m= T7"; O=~--w-je~. 

We obtain the function ~%(0, a u) of 0 and ~ u, which is the coefficient in the th i rd  equation of Eq. (1.6), by 
measur ing  the capacitance and dimensions of the coaxial cable corresponding to a thin-walled tube in aweak  
varying field (when str ict ion can be neglected). 

3. Free  energy ,I, can be represen ted  by the space integral  over the entire space 

where 0 is the state charac te r iz ing  the absence of an e lec t r ic  field and s t ra in  and M is the state in the 
presence  of an e lectr ic  field and s t ra ins .  We assume that the integrand in Eq. (3.1) has the fo rm of a total  
differential .  

We calculate the continuous virtuaI displacement 5 u i and induction 5 D to formulate  the f r e e - e n e r g y  
minimum theorem by means of the equations 

5u~ = u ~ -  u~, x E 17; 
6ui=O, x ~ S; 

dwSD=-O, ~6DdE=O. 

Here it is assumed that 

F~=0, p=0. 

The f r ee - ene rgy  minimum theorem a s se r t s  that the t rue equilibrium state of a body whose mater ia l  
has been strengthened differs f rom the vir tual  viscous state in that the total f ree  energy at constant t e m -  
pera ture  is at a minimum for  the t rue  state.  To prove the theorem,  we use the condition 

and the strengthening condition 

t o/ 

OSu OSu Og /OS u \2 D (Su, ~, E) 
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A simple proportional  loading theorem for  die lectr ics  in an electr ic  field can be proved for  mater ia l s  
defined by the equations 

8 ~ = 0 ;  k = o c ;  S - - 0 r  E o o  - -  ae,~' = ~-D;: ( 3 . 2 )  

(D ~-- Ae'~+u t -~ D~B(e~); A, 7----const. 

Let us say that loading is simple if the directional tensors of the mechanical stresses [i] and the unit 
field strength vectors are constant in time. Let us say that a process in that stresses, strains, and induc- 
tion vary in proportion to their time-dependent parameters, is a process of proportional resistance to load- 
ing. The variation of mass forces, surface forces, and the electric field in proportion to the time-dependent 
parameters, is called proportional loading. 

It was shown that the simple proportional loading of material given by Eq. (3.2) in the presence of 
an electric field is a process whose resistance is not proportional to loading. 

It can be shown that the elastic unloading problem for a dielectric in increments of the corresponding 
values will not have the form of the elastic dielectric problem, which is explained by the nonlinearity of 
the electrical terms in the equilibrium equations and boundary conditions with respect to the field. If the 
unloading problem is solved by the method of successive approximations, it is necessary to separately solve 
at each state an electrostatics problem and unloading equation for the known strain state found from the 
preceding approximations, and a mechanical problem for known fields and inductions. The elastic unload- 
ing problem with known fields and inductions in increments of the mechanical values will have the form of 
the elast ic problem under the condition that increments  of e lec t r ic  forces  act on the body. 

Therefore ,  as in the absence of an electr ic  field, we have an unloading theorem t rue  at each state of 
the success ive  approximations.  Displacements at a given moment of the unloading stage differ f rom their  
values at the moment unloading begins by the size of the elastic displacements which ar i se  in the body if 
external mass  forces  found in the preceding approximation and equal to the force  differences acting on the 
body at the given moments are  applied to it in the natural  state.  This is also the case with s trains,  induc- 
tions, and s t r e s ses .  A theorem for  the residual s t r e s ses ,  s trains,  and displacements with the complete r e -  
moval of external loads and the field is obtained as a coro l la ry  of the elastic unloading theorem.  

I. 
2. 
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