SMALL ELASTOPLASTIC STRAINS OF DIELECTRICS
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The theory of small elastoplastic strains of dielectrics in the presence of an electric field is
developed in the work. An expression is obtained for the electric part of the stress tensor,
Total free energy minimum theorems with constant temperature and simple proportional
loading and unloading theorems are proved, Experiments to calculate the mass functions
are discussed.

1. The theory of small elastoplastic strains and its fundamental theorems andcorollaries {1} were
generalized in [2] to the case of instantaneous small elastoplastic strains. There also arises the problem,
to be discussed below, regarding the development of a theory of small elastoplastic strains of dielectrics
in the presence of an electric field.

Let us consider a solid dielectric of arbitrary shape with volume V bounded by the surface S. We
introduce in a nondeformed coordinate system x;, the uj, or components of the displacement vector and ¢ y;,
the strain tensor components. We will henceforth assume that volume forces with cubic density F; act on
the body and stresses Tj on the surface S. The electric field E is created by external charges distributed
with density p within V and by free charges with density py on the conductor surface Z. It is necessary
to solve the electrostatics problem defined by Maxwell's equations and by the corresponding boundary con-
ditions, taking into account deformation of the dielectric if we are given Fy, T}, p, and py. Suppose the di-
electric medium is isotropic in the unstressed state in terms of electrical and mechanical properties. In
general, strain destroys the isotropy of the body. Henceforth we will assume that the dielectric is also
isotropic following strain

w=%y+f(eu, 0),

where n; is the permittivity of the medium in the undeformed state, 6 =¢ ji, and £ is strain intensity:

12
&y = [—g— eijeij] . (1.1)
Here, ejj is the strain deviator.

Following [3], we obtain an expression for the stress tensor due to the electric field,

e 1 of 2 €5 8
O',ij:—-z—Ez( / ]+-a-é6ij).

The equilibrium equations, taking into account Coulomb forces, are written in the form
90, ; .
7, +pE; - F; =0,

where 0 i =ogj +0'i9., and where O‘io- is the mechanical part of the stress tensor related to the variation in

the mechanical part of free energy with variations in é¢ ij

We have, in accordance with [3] for the total stress tensor Tij»

0 E2,
Tij = 03 O'?,j —I— %o (Eq,E] —_ 76”)
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The boundary conditions for the stresses on surfaces with normals having directional cosines n; will be
written in the form

E2
Tim; = (EﬂEu'—-_;'ﬁii) ny+T; z&€8—=3; (1.2)
Tini=T; ¢ & 2.

Here, Z; is the part of the conductor surface coinciding with the part of the surface S of the dielectric,
We represent the tensor cﬂl’j in a form of a deviator and a spherical tensor

1 0

0 _ 0, ,
0ij = Sij+ 0°8y; 00 = 5 0ou.

We set

12

ou=[3548)]" (EEy2 = B; D= (DD,

where the D; are the components of the induction vector. We will assume that loading is simple or nearly
simple [1]. A calculation of simple loading, both mechanical and electric, will be given below,

The theory of small elastoplastic strains of dielectrics with simple active loading is described by
three laws. Firstly, the magnitudes o9 and ¢ obey Hooke's law,

0%=3e. (1.3)

Secondly, the deviator values are related by the equation

2 Oy
8% = T3, O (1.4
Finally,
E; = % D,. (1.5)

We further add to Egs. (1.3)=(1.5) three equations defining three universal functions that satisfy the
correspondence principle when no field is present:

k=q(D); ou=ws(e, D);
E=q4(0, e)D; (0, en)=1/x. (1.6)

2. The function ¢, occurring in Eq. (1.6) can be determined from a uniform compression experiment
on a thin, flat, dielectric sphere, ¢, can be determined from a linear compression experiment on a thin
tablet in a homogeneous field, and ¢4 can be determined from a tension and torsion experiment on a thin-
walled tube in a varying field.

We will consider the uniform compression problem in the high-pressure chamber of a solid dielectric
medium, filling the space between the plates of a spherical capacitor. The pressure p is uniformly distrib-
uted with respect to the inner and outer surfaces of the hollow sphere. The distance c between the plates
is small: c<« R, where R is the mean radius of the plates, Stress and strain can therefore be considered
homogeneous to an approximation. According to Eq. (1.2},

© _ 1D oF 2 07\, Dt _ (2.1)
Orr v2 " dsu 3 48u + L’U)T_—IO' = — P
0 1 D2 af 2 e(p(p af 2 .
"w*iﬁ(@;??{*o—u —g =0
G At 2w o) D2
Gap — 3 <e3 ) Tz =0
Adding Egs. (2.1) and noting that ej; =0, we obtain
3D gi . D2
0) = —p e — 2 -
300 =—p+ 3z 7y 00 =@ (D)e (2.2)

1t is evident from Eq. (2.2) that if we know «(# , £ ) and measure p, 6, D, and ®, we can obtain (pi(D). The
form of the dependence of %(§, £,) on 6 and &, will be determined below.
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Let us consider the strain problem for a dielectric plate within a plane capacitor and filling it. The
axis z is directed along the normal to the capacitor plates. We assume that the plate dimensions (equal to
a in the direction of the x axis and to b in the direction of the y axis) satisfy the condition a > b, but at the
same time a, b> d, where d is plate thickness. In this case, the plate can be approximately considered as
a bar. Suppose a stress Ty acts in the direction of the x axis and let all components of the strain tensor,
except for e xx=£1, be set equal to 0. It is necessary to restrict strain along the y axis by means of un-
deformable walls in order to realize linear compression in the direction of the x axis. It can be verified
that if we set € yx =const, the boundary conditions and equilibrium equations are satisfied. Thus the plate
experiences homogeneous strain, Then

ux==2/38;, eyy=-— £1/3; e;,=— 84/3;
exy=exz =6y, =0; O0=¢g;, 8,=2/3e,.
We have, in accordance with Eq. (1.2), on the end faces of the plate

) 1 D2 gf 1 D2f

We can find @4(€ 4, D) by measuring €4, Tx, %, and D if we know ¢ (D) and ¢4(0, ey). We have by the ten-
sion and torsion experiment for a thin-walled dielectric tube

0 i} 0 0 (1] . ’
Oygy =T, Oxx ™= Oyy = Ox; = Oyz = O; o, = Oy (2 .3)
Exy=7; Exx=8yy=—1/me,;, &,,=e;. (2.4)

The curve m =m(e;, ¥) was also found in the experiment. It can be easily verified that Egs. (2.3) and (2.4)
satisfy the equilibrium equations and boundary conditions. We obtain from Egs. (1.1), (2.3), and (2.4),

3 2(m—1)2? 2 3 5 m—2
RV, oo (=),

We obtain the function ¢4(8, € of § and &, which is the coefficient in the third equation of Eq. (1.6), by
measuring the capacitance and dimensions of the coaxial cable corresponding to a thin-walled tube in aweak
varying field (when striction can be neglected).

3. Free energy ¥ can be represented by the space integral over the entire space
M
Y= j [5 (o584 -+ Eké‘,Dh)} v, (3.1)
0

where 0 is the state characterizing the absence of an electric field and strain and M is the state in the
presence of an electric field and strains. We assume that the integrand in Eq. (3.1) has the form of a total
differential.

We calculate the continuous virtual displacement 6u; and induction 3 D to formulate the free-energy
minimum theorem by means of the equations

Su; = u; —uy, zcV;

Sui:O, z E S;
duwdD=0, $8DdY =0.
Here it is assumed that
Fiz(), p=0

’ The free-energy minimum theorem asserts that the true equilibrium state of a body whose material
has been strengthened differs from the virtual viscous state in that the total free energy at constant tem-~
perature is at a minimum for the true state. To prove the theorem, we use the condition

1
Oy = ? E'2 0—81-
and the strengthening condition

38, _ . 98, oo >(asu )2;1 D(S, o E) ,

i i ——— — 0.
o8, =% 08, 98y, 08y, D (e, 844, D) >
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A simple proportional loading theorem for dielectrics in an electric field can be proved for materials
defined by the equations
L oD
8ag=0; k= oo; Suza; E =5y (3.2)
® = Ae¥! - D®B(e,); 4, y=const.

Let us say that loading is simple if the directional tensors of the mechanical stresses [1] and the unit
field strength vectors are constant in time. Let us say that a process in that stresses, strains, and induc-
tion vary in proportion to their time-dependent parameters, is a process of proportional resistance to load-
ing. The variation of mass forces, surface forces, and the electric field in proportion to the time-dependent
parameters, is called proportional loading.

It was shown that the simple proportional loading of material given by Eq. (3.2) in the presence of
an electric field is a process whose resistance is not proportional to loading.

It can be shown that the elastic unloading problem for a dielectric in increments of the corresponding
values will not have the form of the elastic dielectric problem, which is explained by the nonlinearity of
the electrical terms in the equilibrium equations and boundary conditions with respect to the field. If the
unloading problem is solved by the method of successive approximations, it is necessary to separately solve
at each state an electrostatics problem and unloading equation for the known strain state found from the
preceding approximations, and a mechanical problem for known fields and inductions. The elastic unload-
ing problem with known fields and inductions in increments of the mechanical values will have the form of
the elastic problem under the condition that increments of electric forces act on the body.

Therefore, as in the absence of an electric field, we have an unloading theorem true at each state of
the successive approximations. Displacements at a given moment of the unloading stage differ from their
values at the moment unloading begins by the size of the elastic displacements which arise in the body if
external mass forces found in the preceding approximation and equal to the force differences acting on the
body at the given moments are applied to it in the natural state. This is also the case with straing, induc-
tions, and stresses. A theorem for the residual stresses, strains, and displacements with the complete re-
moval of external loads and the field is obtained as a corollary of the elastic unloading theorem.
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